Quantum-Logics-Valued Measure Convergence Theorem

Wu Junde,1*,***⁴ Lu Shijie,2 and Cho Minhyung3**

Received April 24, 2003

In this paper, the following quantum-logic valued measure convergence theorem is proved: Let $(L_1, 0, 1)$ be a Boolean algebra, $(L_2, \perp, \oplus, 0, 1)$ be a quantum logic and $\{\mu_n : n \in \mathbb{N}\}\$ be a sequence of *s*-bounded (L_2 , \perp , \oplus , 0, 1)-valued measures which are defined on $(L_1, 0, 1)$. If for each $a \in (L_1, 0, 1)$, $\{\mu_n(a)\}_{n \in \mathbb{N}}$ is an order topology $\tau_0^{L_2}$ Cauchy sequence, when {*v*(*a*)} convergent to 0, { $\mu_n(a)$ } is order topology $\tau_0^{L_2}$ convergent to 0 for each $n \in \mathbb{N}$, where *v* is a nonnegative finite additive measure which is defined on $(L_1, 0, 1)$, then when $\{v(a)\}\$ convergent to 0, $\{\mu_n(a)\}\$ are order topology $\tau_0^{L_2}$ convergent to 0 uniformly with respect to $n \in \mathbb{N}$.

KEY WORDS: quantum logics; effect algebras; measures.

1. INTRODUCTION

In 1994, Foulis and Bennett (1994) introduced the following quantum logic structure and called it the *effect algebra*.

Let *L* be a set with two special elements 0, 1, \perp be a subset of $L \times L$, if $(a,$ *b*) \in ⊥, denote *a* ⊥ *b*, and let \oplus : ⊥ → *L* be a binary operation. We say that the algebraic system $(L, \perp, \oplus, 0, 1)$ is an *effect algebra* if the following axioms hold

- (i) (Commutative Law) If $a, b \in L$ and $a \perp b$, then $b \perp a$ and $a \oplus b =$ $b \oplus a$.
- (ii) (Associative Law) If $a, b, c \in L$, $a \perp b$ and $(a \oplus b) \perp c$, then $b \perp$ $c, a \perp (b \oplus c)$ and $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.
- (iii) (Orthocomplementation Law) For each $a \in L$ there exists an unique *b* ∈ *L* such that $a \perp b$ and $a \oplus b = 1$.
- (iv) (Zero-Unit Law) If $a \in L$ and $1 \perp a$, then $a = 0$.

2603

¹ Department of Mathematics, Zhejiang University, Hangzhou, People's Republic of China.

²City College, Zhejiang University, Hangzhou, People's Republic of China.

³ Department of Applied Mathematics, Kumoh National Institute of Technology, Kyungbuk, Korea.

⁴ To whom correspondence should be addressed at Department of Mathematics, Zhejiang University, Hangzhou, People's Republic of China; e-mail: wjd@math.zju.edu.cn.

Let $(L, \perp, \oplus, 0, 1)$ be an effect algebra. If $a, b \in L$ and $a \perp b$ we say that a and *b* be *orthogonal*. If $a \oplus b = 1$ we say that *b* is the *orthocomplement* of *a*, and we write $b = a'$. Clearly $1' = 0$, $(a')' = a$, $a \perp 0$ and $a \oplus 0 = a$ for all $a \in L$. We say that *a* $\leq b$ if there exists *c* \in *L* such that *a* \perp *c* and *a* \oplus *c* = *b*. We may prove that \leq is a partial ordering on *L* and satisfies that $0 \leq a \leq 1$, $a \leq b \Leftrightarrow b' \leq a'$ and *a* ≤ *b*^{\prime} \Leftrightarrow *a* ⊥ *b* for *a*, *b* ∈ *L*.

If $a \leq b$, the element $c \in L$ such that $c \perp a$ and $a \oplus c = b$ is unique, and satisfies the condition $c = (a \oplus b')'$. It will be denoted by $c = b \ominus a$.

Let $F = \{a_i : 1 \le i \le n\}$ be a finite subset of *L*. If $a_1 \perp a_2, (a_1 \oplus a_2)$ ⊥ a_3 , ... and $(a_1 \oplus a_2 \cdots \oplus a_{n-1})$ ⊥ a_n , we say that *F* is *orthogonal* and we define $\oplus F = a_1 \oplus a_2 \cdots \oplus a_n = (a_1 \oplus \cdots \oplus a_{n-1}) \oplus a_n$ (by the commutative and associative laws, this sum does not depend of any permutation of elements). Now, if *A* is an arbitrary subset of *L* and $\mathcal{F}(A)$ is the family of all finite subsets of *A*, we say that *A* is *orthogonal* if *F* is orthogonal for every $F \in \mathcal{F}(A)$. If *A* is orthogonal, we define $\bigoplus A = \bigvee \{\bigoplus F : F \in \mathcal{F}(A)\}\)$, supposed that the supremum exists in (L, \leq) , and it is called the \bigoplus -*sum* of A. If A is an orthogonal subset of L and $B \subseteq A$, it is obviously that *B* is also orthogonal. If there exist $\oplus A$ and $\oplus B$, then $\oplus B \leq \oplus A$. Moreover, let $(a_i)_{i \in I}$ be an orthogonal subset of *L*, then we may prove (Mazario, 2001)

(1) If *I* is finite and $J \subseteq I$, then $(\bigoplus_{i \in J} a_i) \perp (\bigoplus_{i \in I \setminus J} a_i)$ and

$$
(\oplus_{i\in I}a_i)=(\oplus_{i\in J}a_i)\oplus(\oplus_{i\in I\setminus J}a_i)
$$

- (2) If $J \subseteq I$ and there exists $a = \bigoplus_{i \in I} a_i$, $b = \bigoplus_{i \in J} a_i$, $c = \bigoplus_{i \in I \setminus J} a_i$, then $b \perp c$ and $a = b \oplus c$.
- (3) If there exists $\bigoplus_{i \in M} a_i$ for all $M \subseteq I$ and $\{H_j : j \in J\}$ is a partition of *I*, then $A = \{\oplus_{i \in H_i} a_i : j \in J\}$ is an orthogonal subset of *L*, there exists \oplus *A* and \oplus *A* = \oplus _{*i*∈*I*} a_i .
- (4) If $(F_i)_{i \in J}$ is a family of finite and pairwise disjoint subsets of *I*, then the set $\{\oplus_{i \in F_j} a_i : j \in J\}$ is orthogonal in *L*.
- (5) If $b_i \in L$ and $b_i \leq a_i$ for all $i \in I$, then $(b_i)_{i \in I}$ is an orthogonal subset of *L*.
- (6) If $a \oplus b$ and $a \vee b$ exist, then $a \wedge b$ exists and $a \oplus b = (a \vee b) \oplus (a \wedge b)$.

If the partial order \leq of effect algebra $(L, \perp, \oplus, 0, 1)$ defined as above is a lattice, then the effect algebra $(L, \perp, \oplus, 0, 1)$ is said to be a *lattice effect algebra*.

If for all $a, b \in L$, $a \leq b$ or $b \leq a$, then $(L, \perp, \oplus, 0, 1)$ is said to be a *totally ordered effect algebra*; if for all $a, b \in L$, satisfies that $a < b$, there exists $c \in L$ such that $a < c < b$, then $(L, \perp, \oplus, 0, 1)$ is said to be *connected*.

An effect algebra is *complete*, if for each orthogonal subset *A* of *L*, the ⊕-sum ⊕*A* exists; if for each countable orthogonal subset *B* of *L*, the ⊕-sum ⊕*B* exists, then we say that the effect algebra is σ-*complete*.

We say that the effect algebra *L* has the *sequential completeness property*, if for each orthogonal sequence $\{a_i\}$ of *L*, there is a subsequence $\{a_{i_k}\}$ of $\{a_i\}$ such that $\bigoplus_k a_{i_k}$ exists.

2. ORDER TOPOLOGY OF QUANTUM LOGICS

A partial ordered set (Λ, \leq) is said to be a *directed set*, if for all $\alpha, \beta \in \Lambda$, there exists $\gamma \in \Lambda$ such that $\alpha \leq \gamma$, $\beta \leq \gamma$.

If (Λ, \preceq) is a directed set and for each $\alpha \in \Lambda$, $a_{\alpha} \in (L, \perp, \oplus, 0, 1)$, then ${a_{\alpha}}_{\alpha \in \Lambda}$ is said to be a *net* of $(L, \bot, \oplus, 0, 1)$.

Let $\{a_{\alpha}\}_{{\alpha \in \Lambda}}$ be a net of $(L, \perp, \oplus, 0, 1)$. Then we write $a_{\alpha} \uparrow$, when $\alpha \leq \beta$, $a_{\alpha} \leq a_{\beta}$. Moreover, if *a* is the supremum of { $a_{\alpha} : \alpha \in \Lambda$ }, i.e., $a = \vee \{a_{\alpha} : \alpha \leq a_{\beta} \}$ $\alpha \in \Lambda$, then we write $a_{\alpha} \uparrow a$.

Similarly, we may write $a_{\alpha} \downarrow$ and $a_{\alpha} \downarrow a$.

If $\{u_{\alpha}\}_{{\alpha}\in{\Lambda}}, \{v_{\alpha}\}_{{\alpha}\in{\Lambda}}$ are two nets of $(L, \perp, \oplus, 0, 1)$, for $u \uparrow u_{\alpha} \leq v_{\alpha} \downarrow v$ means that $u_{\alpha} \leq v_{\alpha}$ for all $\alpha \in \Lambda$ and $u_{\alpha} \uparrow u$ and $v_{\alpha} \downarrow v$. We write $b \leq u_{\alpha} \uparrow u$ if $b \leq u_\alpha$ for all $\alpha \in \Lambda$ and $u_\alpha \uparrow u$.

We say a net $\{a_{\alpha}\}_{{\alpha \in \Lambda}}$ of $(L, \perp, \oplus, 0, 1)$ is *order convergent* to a point *a* of *L* if there exist two nets $\{u_{\alpha}\}_{{\alpha \in \Lambda}}$ and $\{v_{\alpha}\}_{{\alpha \in \Lambda}}$ of $(L, \perp, \oplus, 0, 1)$ such that

$$
a \uparrow u_{\alpha} \leq a_{\alpha} \leq v_{\alpha} \downarrow a.
$$

Let $\mathcal{F} = \{F : F = \emptyset \text{ or } F \subseteq L \text{ and for each net } \{a_{\alpha}\}_{{\alpha \in \Lambda}} \text{ of } F \text{ such that if }$ ${a_{\alpha}}_{\alpha \in \Lambda}$ is order convergent to *a*, then $a \in F$.

It is easy to prove that \emptyset , $L \in \mathcal{F}$ and if $F_1, F_2, \ldots, F_n \in \mathcal{F}$, then $\bigcup_{i=1}^n F_i \in \mathcal{F}$, if ${F_\mu}_{\mu \in \Omega} \subseteq \mathcal{F}$, then $\bigcap_{\mu \in \Omega} F_\mu \in \mathcal{F}$. Thus, the family $\mathcal F$ of subsets of *L* define a topology τ_0^L on $(L, \perp, \oplus, 0, 1)$ such that F consists of all closed sets of this topology. The topology τ_0^L is called the *order topology* of (*L*, \bot , \oplus , 0, 1) (Birkhoff, 1948).

We can prove that the order topology τ_0^L of $(L, \perp, \oplus, 0, 1)$ is the finest (strongest) topology on *L* such that for each net $\{a_{\alpha}\}_{{\alpha \in \Lambda}}$ of $(L, \perp, \oplus, 0, 1)$, if ${a_{\alpha}}_{\alpha \in \Lambda}$ is order convergent to *a*, then ${a_{\alpha}}_{\alpha \in \Lambda}$ must be topology τ_0^L convergent to *a*. But the converse is not true.

Lemma 1. *(Junde et al., 2003). Let* $(L, \perp, \oplus, 0, 1)$ *be a totally ordered effect algebra. If* $A = \{a_k\}_{k \in \mathbb{N}}$ *is orthogonal* ⊕-summable, then $\{a_n\}_{n \in \mathbb{N}}$ *is order topology* τ_0^L *convergent to 0.*

Lemma 2. *(Junde et al., 2003). If* $(L, \perp, \oplus, 0, 1)$ *is a* σ *-complete totally order connect effect algebra, then for each* $h \in L$, $0 < h$, there exists an orthogonal ⊕*-summable sequence* $\{h_i\}$ *of* L *such that* $\vee_{n \in \mathbb{N}} \{\oplus_{i=1}^n h_i\}$ < h .

3. MAIN THEOREM AND ITS PROOF

Definition 3.1. (Junde *et al.*, 2003). Let $(L, \perp, \oplus, 0, 1)$ be a totally ordered effect algebra. We say that the sequence $\{a_n\}_{n\in\mathbb{N}}$ of $(L, \perp, \oplus, 0, 1)$ is an order topology τ_0^L -*Cauchy sequence*, if for each $h \in L$, $0 < h$, there exists $n_0 \in \mathbb{N}$ such that when $n_0 \le n, n_0 \le m$, if $a_n \le a_m$, then $a_m \ominus a_n < h$, if $a_m \le a_n$, then $a_n \ominus a_m < h$.

Let $(L_1, \perp, \oplus, 0, 1), (L_2, \perp, \oplus, 0, 1)$ be two effect algebras. A mapping $\mu: L_1 \to L_2$ is said to be a *measure* which is defined on $(L_1, \perp, \oplus, 0, 1)$ and take valued in $(L_2, \perp, \oplus, 0, 1)$, if $a, b \in (L_1, \perp, \oplus, 0, 1)$ with $a \perp b$, then $\mu(a) \perp \mu(b)$ and $\mu(a \oplus b) = \mu(a) \oplus \mu(b)$. We say the measure μ is *s-bounded* with respect to the order topology $\tau_0^{L_2}$ if for each orthogonal sequence $\{a_n\}$ of $(L_1, \perp, \oplus, 0, 1)$, $\{\mu(a_n)\}\$ is order topology $\tau_0^{L_2}$ convergent to 0. If $\{\mu_n : n \in \mathbb{N}\}\$ is a sequence of s-bounded L_2 -valued measures which are defined on L_1 and for each orthogonal sequence $\{a_k\}$ of $(L_1, \perp, \oplus, 0, 1)$, $\{\mu_n(a_k)\}\$ is order topology $\tau_0^{L_2}$ convergent to 0 uniformly with respect to $n \in \mathbb{N}$, then $\{\mu_n : n \in \mathbb{N}\}\$ is said to be *uniformaly s-bounded*.

Brooks and Jewett (1970) proved the following famous Vitali–Hahn–Saks measure theorem:

Theorem 1. *If* A *is a* σ -algebra on a nonempty set Ω , $(X, \| \cdot \|)$ *is a Banach space,* $\{\mu_n : n \in \mathbb{N}\}\$ is a sequence of s-bounded X-valued measures which are *defined on* A *and for each* $A \in \mathcal{A}, \{\mu_n(A)\}_{n \in \mathbb{N}}$ *is a* $\|\cdot\|$ *convergent sequence,* $\lim_{\mu_n(A)=0\mu(A)\to 0}$ *for each* $n \in \mathbb{N}$ *, where* v *is a nonnegative finite additive measure which is defined on* A, then $\lim_{\mu_n(A)=0\mu(A)\to 0}$ *uniformly with respect to* $n \in \mathbb{N}$ *.*

An interesting problem is whether Theorem 1 is also hold for quantum logics valued measures? Now, we show that the answer is true.

At first, by Lemma 1, 2, and the methods of Junde *et al.* (2003), Junde and Zhihao (2003), and Mazario (2001), we may prove the following lemma:

Lemma 3. *Let* $(L_1, \perp, \oplus, 0, 1)$ *and* $(L_2, \perp, \oplus, 0, 1)$ *be two quantum logics,* L_1 *have the sequentially completeness property,* $(L_2, \perp, \oplus, 0, 1)$ *be a* σ -complete *totally order connect effect algebra,* $\{\mu_n : n \in \mathbb{N}\}\$ *be a sequence of s-bounded* (*L*2, ⊥, ⊕, 0, 1)*-valued measures which are defined on* (*L*1, ⊥, ⊕, 0, 1)*. If for each* $a \in (L_1, \perp, \oplus, 0, 1), \{\mu_n(a)\}_{n \in \mathbb{N}}$ *, is an order topology* $\tau_0^{L_2}$ Cauchy sequence, then {µ*n*} *is uniformly s-bounded.*

Our main result is:

Theorem 3. *Let* $(L_1, 0, 1)$ *be a Boolean algebra and* $(L_2, \perp, \oplus, 0, 1)$ *be a quantum logics,* L_1 *have the sequentially completeness property,* $(L_2, \perp, \oplus, 0, 1)$ *be a* **Quantum-Logics-Valued Measure Convergence Theorem 2607**

σ*-complete totally order connect effect algebra,* {µ*ⁿ* : *n* ∈ **N**} *be a sequence of s-bounded* (L_2 , \perp , \oplus , 0, 1)*-valued measures which are defined on* (L_1 , 0, 1)*. If for each a* \in (*L*₁, 0, 1), { $\mu_n(a)$ } $_{n \in \mathbb{N}}$ *is an order topology* $\tau_0^{L_2}$ *Cauchy sequence, and for each n* \in **N***, when* {*v*(*a*)} *convergent to 0,* { $\mu_n(a)$ } *is order topology* $\tau_0^{L_2}$ *convergent to 0, where* ν *is a nonnegative finite additive measure which is defined on* $(L_1, 0, 1)$ *, then when* $\{v(a)\}$ *convergent to 0,* $\{\mu_n(a)\}$ *are order topology* $\tau_0^{L_2}$ *convergent to 0 uniformly with respect to* $n \in \mathbb{N}$ *.*

Proof: If the conclusion is not ture, there exists $h \in L_2$, orthogonal \oplus -summable sequence $\{h_k\} \subseteq L_2, \{n_k\} \subseteq \mathbb{N}$, positive numbers sequence $\{\delta_k\}, \{a_k\} \subseteq L_2$, such that $\bigoplus_{i=1}^{\infty} h_i < h$, for each $k \in \mathbb{N}$, $\bigoplus_{i=k+1}^{\infty} h_i < h_k$, $\mu_{n_{k+1}}(a_{k+1}) > h$; $\nu(a_{k+1})$ $\langle \delta_{k+1} \rangle$ and $\nu(a) \langle \delta_{k+1} \rangle$ implies that $\mu_{n_i}(a) \langle h_{2^{k+3}} \rangle$ for each $j \leq k$. Without loss generality, we may assume that $n_i = i$. Thus we have

$$
\mu_{k+1}(a_{k+1}) > h, \tag{1}
$$

$$
\mu_j(a) < h_{2^{k+3}}, \, j \leq k, \, a \leq a_{k+1}.\tag{2}
$$

Let $c_1 = a_2$ and $i_1 = 2$. If there exists an $i_2 > 2$ such that $\mu_{i_2}(c_1 \wedge a_{i_2}) > h_4$, then let $c_2 = c_1 \wedge a'_{i_2}$. If c_1, \dots, c_k and i_i, \dots, i_k have been chosen and that there exists an $i_{k+1} > i_k$ such that $\mu_{i_{k+1}}(c_k \wedge a_{i_{k+1}}) > h_4$, then let $c_{k+1} = c_k \wedge a'_{i_{k+1}}$. Thus, we have

$$
c_{k+1} \leq c_k, \, c_k \ominus c_{k+1} = c_k \wedge a_{i_{k+1}}.\tag{3}
$$

It follows from (2), (3), and the assumption of $\{h_i\}$ that

$$
\mu_{i_{k+1}}(c_k \wedge c_{k+1}) > h_4. \tag{4}
$$

$$
\mu_{i_k}(c_k \wedge c_{k+1}) > h_{2^{k+3}}.\tag{5}
$$

Now, we show that there exists a $c_{k_0} \in L_1$ and an i_{k_0} such that for all $j > i_{k_0}, \mu_j(c_{k_0} \wedge a_j) < h_4.$

In fact, if not, we can obtain an orthogonal sequence ${c_k \wedge c_{k+1}}$ of L_1 which satisfy (4) and (5) . Thus, we have

$$
\mu_{i_{k+1}}(c_k \wedge c_{k+1}) \ominus \mu_{i_k}(c_k \wedge c_{k+1}) > h_8, k = 1, 2, \cdots.
$$

This contradicts Lemma 3. Hence, there exists a $c_{k_0} \in L_1$ and an i_{k_0} such that for all $j > i_{k_0}, \mu_j(c_{k_0} \wedge a_j) < h_4$.

Let $p_1 = i_{k_0}, g_1 = c_{k_0}, \mu_i^{(1)} = \mu_{p_1+i}, a_i^{(1)} = a_{p_1+i} \wedge g'_1$. It follows from (1) and (5) easily that

$$
\mu_1(g_1) < h_{16}, \\
\mu_2(g_1) < h \ominus h_4.
$$

So

$$
\mu_2(g_1) \ominus \mu_1(g_1) > h \ominus h_4 \ominus h_{16},
$$
\n
$$
\mu_i^{(1)}\left(a_i^{(1)}\right) > h \ominus h_4,
$$
\n
$$
\mu_j^{(1)}(a) < h_{2^{i+3}}, a \le a_i^{(1)}, j < i.
$$

Let $c_1^{(1)} = a_2^{(1)}$. Similarly, we can obtain a $c_{k_1}^{(1)}$ and an i_{k_1} such that for all $j > i_{k_1}, \mu_j^{(1)}(c_{k_1}^{(1)} \wedge a_j^{(1)}) < h_8.$

Let $p_2 = i_{k_1}, g_2 = c_{k_1}^{(1)}, \mu_i^{(2)} = \mu_{p_2+i}^{(1)}, a_i^{(2)} = a_{p_2+i}^{(1)} \wedge g_2^{'}$. Then $g_1 \wedge g_2 = 0$ and $\mu_2(g_2) < h_{32}, \mu_1^{(1)}(g_2) > h \oplus h_4 \oplus h_8$. So,

$$
\mu_1^{(1)}(g_2) \ominus \mu_2(g_2) > h \ominus h_4 \ominus h_8 \ominus h_{32},
$$

$$
\mu_i^{(2)}(a_i^{(2)}) > h \ominus h_4 \ominus h_8,
$$

$$
\mu_j^{(2)}(a) < h_{2^{i+3}}, a \le a_i^{(2)}, j < i.
$$

Inductively, we can obtain an disjoint sequence $\{g_k\}$ of L_1 and $\{\mu_1^{(k)}\}$ such that $\mu_1^{(k+1)}(g_k + 2) \ominus \mu_1^{(k)}(g_k + 2) > h \ominus h_4 \ominus h_8 \ominus \cdots \ominus h_{2^{k+1}} \ominus \cdots > h \ominus h_1$ for all $k \in \mathbb{N}$.

This contradicts Lemma 3 and so the theorem is proved.

ACKNOWLEDGMENTS

This paper was supported by Research Fund of Kumoh National Institute of Technology in 2003, and was supported by the Brain Korea 21 Project in 2001.

REFERENCES

Birkhoff, G. (1948). *Lattice Theory*, Vol. XXV, A.M.S. Colloquim New York.

- Brooks, J. K. and Jewett, R. S. (1970). On finitely additive measures. *Proceedings of National Academy of Science* U.S.A **67,** 1294–1298.
- Foulis, D. J. and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics. *Foundations of Physics* **24,** 1331–1352.
- Junde, W. Shijie, L., and Dohan, K. (2003). *Antosik–Mikusinski Matrix Convergence Theorem in Quantum Logics* **42,** 1893–1899.
- Junde, W., and Zhiao, M. (2003). The Brooks-Jewett theorem on effect algebras with the sequential completeness property. *Czechoslovak Journal of Physics* **53,** 379–383.
- Mazario, F. G. (2001). Convergence theorems for topological group valued measures on effect algebras. *Bulletin of Australian Mathematical Society* **64,** 213–231.